Mathematics - Algebra 1
 Practice Test Answer and Alignment Document
 Pencil-and-Paper ABO

The following pages include the answer key for all machine-scored items, followed by the rubrics for the hand-scored items.

- The rubrics show sample student responses. Other valid methods for solving the problem can earn full credit unless a specific method is required by the item.
- In items where the scores are awarded for full and partial credit, the definition of partial credit will be confirmed during range-finding (reviewing sets of real student work).
- If students make a computation error, they can still earn points for reasoning or modeling.

Unit 1

I tem Number	Answer Key	Evidence Statement Key/ Content Scope	Integrated Course Alignment
1.	A, B, D	A-APR.3-1	3
2.	$\begin{aligned} & \text { Part A: D } \\ & \text { Part B: B } \end{aligned}$	N-RN.B-1	2
3.	D	A-REI. 12	1
4.	C	A-APR.1-1	2
5.	C, E	A-REI. 10	1
6.	B	A-SSE.3a	2
7.	$\begin{aligned} & \text { Part A: A, C, F, H } \\ & \text { Part B: A, D, F, G } \end{aligned}$	F-IF.4-1	none
8.	C, E	F-IF.9-1	none
9.	$\begin{aligned} & \text { Part A: D } \\ & \text { Part B: A, B, C } \end{aligned}$	A-CED.3-1	1

	Part C: 11 Part D: 13		
10.	-3	F-BF.3-1	2
11.	Part A: see rubric Part B: see rubric Part C: see rubric	HS.D.1-1/ 8.EE.C.07.b	1
12.	A, C, D	S-ID.5	1
13.	See rubric	HS.C.6.1/ A-REI.D.10 A-REI.D.11	1
14.	B	A-CED.4-1	1
15.	Part A: D Part B: A, C	S-ID.Int.1	none

Unit 2

Item Number	Evidence Statement Key/ Content Key Scope	Integrated Course Alignment	
16.	C	A-REI.4b-1	2
17.	B	A-SSE.1-1	1
18.	Part A: see rubric Part B: see rubric	HS.D.2-5/ A-CED.A.01	1
19.	D	F-IF.5-1	1
20.	A	F-IF.6-6b	none
21.	B	F-IF.7a-1	1
22.	Part A: A Part B: C	F-Int.1-1	none
23.	C	F-LE.2-1	1
24.	A	A-REI.3	1
25.	See rubric	HS.C.12.1/ F-IF.C.08.a	2
26.	Part A: see rubric Part B: see rubric	HS.D.2-9/ F-BF.A.01.a	2
27.	See rubric	HS.C.16.2/	2

		A-REI.B.04.a A-REI.B.04.b	

Rubrics start on the next page.

Unit 1 \#11 Part A

Score	Description
2	Student response includes each of the following 2 elements: - Correct equation - Valid justification of how the equation was determined Sample Student Response: Let m be the number of cookies that Matt made. Then the number of cookies that Phil made would be 1.25 m . Let A represent the total amount of money earned. $A=0.25(0.80)(m+1.25 m)$ The total number of cookies made is the sum of the number Matt made and the number Phil made. Only 80% of the cookies sold, so the total number needs to be multiplied by 0.8. Each cookie sold for $\$ 0.25$, so the total amount earned would be 0.25 times the 80% that were sold.
1	Student response includes 1 of the 2 elements.
0	Student response is incorrect or irrelevant.
	Unit 1 \#11 Part B
2	Student response includes each of the following 2 elements: - Determination that Matt made 160 cookies and Phil made 200 cookies - Valid work shown Sample Student Response: $\begin{aligned} & 72=0.25(0.80)(m+1.25 m) \\ & 72=(0.20)(2.25 m) \\ & 72=0.45 m \\ & 160=m \\ & 1.25 m=1.25(160)=200 \end{aligned}$ Matt made 160 cookies and Phil made 200 cookies. Note: Student may earn the points in Part B by correctly using an incorrect equation from Part A.
1	Student response includes 1 of the 2 elements.
0	Student response is incorrect or irrelevant.

Unit 1 \#11 Part C

2
Student response includes the following element:

- Full justification for raising the price

	Sample Student Response: If they raise the price to $\$ 0.50$ and only sell 70% of the cookies, the equation will be $A=0.5(0.70)(160+200)$. In this case they will make $\$ 126$, which is over $\$ 50$ more than they made this year. They should raise the price of the cookies.
$\mathbf{1}$	Note: The student may give a valid reason for not raising the price based on risk. This should still earn credit. Also, the student may earn the points in Part C by correctly using an incorrect equation from Part A or B.
$\mathbf{0}$	Student response includes partial justification for raising the price.

Unit 1 \#13	
Score	Description
3	Student response includes each of the following 3 elements: - Correct justification of the number of points on the graph for c < 0 - Correct justification of the number of points on the graph for $\mathrm{C}=0$ - Correct justification of the number of points on the graph for c >0 Sample Student Response: - $\|x\|$ and $\|y\|$ are each nonnegative for all real numbers x and y. So, the sum must be nonnegative for all real numbers. Therefore, the sum cannot equal a negative number. There are no solutions and no points on the graph c >0 - If $c=0$, there is only one solution, $(0,0)$. The graph consists of only one point. - If c >0, there are infinitely many solutions, which means that there are infinitely many points on the graph.
2	Student response includes 2 of the 3 elements.
1	Student response includes 1 of the 3 elements.
0	Student response is incorrect or irrelevant.

Unit 2 \#18 Part A

Score	Description
$\mathbf{1}$	Student response includes the following element: \bullet Correct model

	Sample Student Response: $x+(x-50)+(x-100)+(x-150)+(x-200)=P$ Where x is the amount of money for the first place prize and P is the total amount of prize money.
0	Student response is incorrect or irrelevant.
Unit 2 \#18 Part B	
2	Student response includes each of the following 2 elements: - Correct amounts for each of the five prizes - Valid work shown Sample Student Response: $\begin{aligned} x+(x-50)+(x-100)+(x-150)+(x-200) & =1000 \\ 5 x-500 & =1000 \\ 5 x & =1500 \\ x & =300 \end{aligned}$ Fifth place is $\$ 100$, fourth place is $\$ 150$, third place is $\$ 200$, second place is $\$ 250$, and first place is $\$ 300$.
1	Student response includes 1 of the 2 elements.
0	Student response is incorrect or irrelevant.

Unit 2 \#25	
Score	Description
4	Student response includes each of the following 4 elements: - Algebraic reasoning about the point $(2+d, y)$ - Algebraic reasoning about the point ($2-d, y$) - Identification of the line of symmetry, $x=2$ - Justification of the line $x=2$ as the line of symmetry of $f(x)$ Sample Student Response: If $(2+d, y)$ is on the graph of f, then: $\begin{aligned} y & =f(2+d)=(2+d)(2+d-4) \\ & =(2+d)(d-2) \\ & =d^{2}-4 \end{aligned}$ Therefore, $d^{2}-4$ equals y. If $(2-d, y)$ is on the graph of f, then:

	$\begin{aligned} y & =f(2-d)=(2-d)(2-d-4) \\ & =(2-d)(-d-2) \\ & =d^{2}-4 \\ & =y \end{aligned}$ Therefore, $y=y$, so if the point $(2+d, y)$ is on the graph of f, then so is $(2-d, y)$. The line $x=2$ is a line of symmetry for the graph of f. I know this because x-values that are the same distance (absolute value) d from 2 yield equal y-values in the function. Notes: - Correct simplification is not necessary to earn the first point. - To earn the second point, the two expressions must match and have no mistakes. - The student may appeal to a formula (such as $x=-\frac{b}{2 a}$) for the line of symmetry. - Any justification that addresses point pairs on either side of the line is accepted.
3	Student response includes 3 of the 4 elements.
2	Student response includes 2 of the 4 elements.
1	Student response includes 1 of the 4 elements.
0	Student response is incorrect or irrelevant.

Unit 2 \#26 Part A

Score \quad Description

3	Student response includes each of the following 3 elements: - Correct model - Valid work shown - Valid explanation of d with relation to 450 . Sample Student Response: For 20 minutes of shower time, the family can save $(5-3)(20)=60$ gallons each day. At $\$ 0.002$ per gallon, this is a savings of $\$ 0.12$ per day. Let S represent the cost savings, in dollars, and let d represent the time in days: $\mathrm{S}=-54+0.12 \mathrm{~d}$ The number of days at which the savings become zero can be found by solving this equation: $\begin{aligned} -54+0.12 d & =0 \\ 0.12 d & =54 \\ d & =450 \end{aligned}$ For values of d less than 450, the savings due to reduced water consumption have not yet exceeded the cost of the lowflow showerhead. For values of d greater than 450, the savings due to reduced water consumption have exceeded the cost of the low-flow showerhead. Therefore, the cost savings will be greater than zero after 450 days.
2	Student response includes 2 of the 3 elements.
1	Student response includes 1 of the 3 elements.
0	Student response is incorrect or irrelevant.

Unit 2 \#26 Part B

Student response includes each of the following 3 elements:

- Correct model
- Valid work shown
- Correct computation and interpretation of 81

Sample Student Response:

In the first year, the savings in water costs are $(365)(\$ 0.12)=\$ 43.80$. The low-flow showerhead costs $\$ 54$, and so there is still $\$ 54-\$ 43.80=\$ 10.20$ to recover. After the first year, the cost savings will be (12)(1.05) = 12.6 cents, or $\$ 0.126$ per day. So if S represents the savings and d_{2} represents the number of days in the second year, then the

	new model is: $S=-10.2+0.126 d_{2}$ The number of days at which the savings become zero can be found by solving this equation: $\begin{aligned} -10.2+0.126 d_{2} & =0 \\ 0.126 d_{2} & =10.2 \\ d_{2} & \approx 81 \end{aligned}$ The family will start saving money 81 days into the second year. Note: The student will earn the point if he or she correctly interprets his or her reasonable incorrect model.
2	Student response includes 2 of the 3 elements.
1	Student response includes 1 of the 3 elements.
0	Student response is incorrect or irrelevant.

Unit 2 \#27	
Score	Description
3	Student response includes each of the following 3 elements: - Correct process for deriving the solution - Correctly states the conditions under which x is a real number when $a=2$ and $b=5$, which is that c must be greater than or equal to negative 5 - Correct reasoning shown to support the conditions under which x is a real number when $\mathrm{a}=2$ and $\mathrm{b}=5$ Sample Student Response: $\begin{aligned} a(x-3)^{2}-b & =c \\ a(x-3)^{2} & =b+c \\ (x-3)^{2} & =\frac{b+c}{a} \\ x-3 & = \pm \sqrt{\frac{b+c}{a}} \\ x & =3 \pm \sqrt{\frac{b+c}{a}} \end{aligned}$ If $\mathrm{a}=2$ and $\mathrm{b}=5$, then $\mathrm{x}=3 \pm \sqrt{\frac{5+c}{2}}$. For x to be a real number, $\frac{5+c}{2}$ must be greater than or equal to zero. Therefore, c must be greater than or equal to -5 .
2	Student response includes 2 of the 3 elements.
1	Student response includes 1 of the 3 elements.

$\mathbf{0}$ Student response is incorrect or irrelevant.

